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in reciprocal-space components; 0, 0, 1 in the case of 
K2PtCI4) lies in the plane of scattering or perpen- 
dicular to it. The angles and coordinate system used 
here are defined as for the Enraf-Nonius CAD-4 
diffractometer; this coordinate system is not the same 
as that used in the main text. First calculate Eulerian 
setting angles ~b and X for 0 = 0. For these angles h 
is along the y axis and the direction of d is s = XZRd, 
where R is the reciprocal-space orientation matrix and 

(1/ (i o 0) 
s =  s2 ,X(X)=  cosx  sin , 

\ s 3 /  - s in  X cos 

cos 4, sin 4, i )  
Z(~b) = - s in  ~b cos ~b . 

0 0 

An azimuthal rotation about the y axis by an angle qJ, 

0 = tan -1 (s3/sl), 

places d in the xy plane (the plane of scattering); this 
is called a ¢r setting. If  d is perpendicular to h (hkO 
reflections in K2PtCI4) it is moved into coincidence 
with the z axis by a further rotation of +90 ° of 0;  
this is called a cr setting. 
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Abstract 

A methodology is described that enables the determi- 
nation of symmetry groups of bicrystals manufac- 
tured from a given dichromatic complex. The dichro- 
matic symmetry group is sectioned by a unique two- 
sided plane corresponding to the planar grain boun- 
dary and the symmetry elements of the bicrystal are 
established as those symmetry elements of the dichro- 
matic group that leave the sectional plane invariant. 
The procedure is employed for investigating generic 
relations for bicrystals whose components have a 
given misorientation relationship. It is demonstrated 
that, for a dichromatic complex with point symmetry 
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higher than 1, bicrystals of identical symmetry can 
be created by more than one crystallographically 
equivalent interfacial plane. Finally, a new scheme is 
proposed for the classification of grain boundaries. 
This scheme provides a comprehensive framework 
for describing the variation of bicrystal symmetry due 
to changes in the orientation and/or  position of the 
associated interfacial plane. 

1. Introduction 

Grain boundaries are two-dimensional features 
separating two misorientated and displaced crystals 
of identical structure. In the crystallographic 
framework of grain-boundary symmetry (Pond & 
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Bollmann, 1979; Pond & Vlachavas, 1983) the inter- 
face is considered to be planar so that we have three- 
dimensional configurations consisting of two semi- 
infinite crystals joined together at the planar interface. 
The starting point in the treatment of grain-boundary 
symmetry is the concept of the dichromatic complex 
that is defined as the configuration of two infinite 
crystals interpenetrated so that their spatial relation- 
ship corresponds to the relationship characterizing 
the particular grain boundary. The desired relative 
orientation (misorientation) and relative translation 
is obtained by rotating and shifting one crystal relative 
to the other, which is kept fixed in space. An ideal 
bicrystal is then manufactured by introducing a 
mathematical plane into the dichromatic complex in 
the orientation and position of the chosen interface 
and rejecting the atoms of one crystal on one side of 
the interface and the atoms of the other crystal on 
the other side. 

The symmetry of the bicrystal depends, in general, 
on the symmetry of the adjacent crystals, their relative 
translation and rotation, the position and orientation 
of the interfacial plane. The effect of all but the last 
two of these factors on the bicrystal symmetry has 
been previously studied by Pond (1977), Pond & 
Bollmann (1979) and Vlachavas (1984a, b). In the 
present paper we will investigate changes of the 
bicrystal symmetry caused by varying the orientation 
and position of the interface. In the following a 
methodology is described enabling us to determine 
the symmetry of any bicrystal manufactured from a 
given dichromatic complex. Thus, we can employ the 
spatial arrangement implied by the dichromatic com- 
plex for recognizing at once all the interfacial planes 
associated with different bicrystal symmetries. Also, 
the presented approach allows us to establish the 
relationships between interfacial planes giving the 
same bicrystal symmetry. 

The symmetry of dichromatic complexes and 
bicrystals is described, as suggested by Pond & Boll- 
mann (1979), by means of two-coloured symmetry 
groups. For this, one of the crystals of the dichromatic 
complex is designated black and the other white; the 
latter is taken as the reference crystal. Symmetry 
operations that leave the white and black crystals 
invariant correspond to ordinary symmetry 
operations and those that relate white to black, or 
vice versa, are associated with antisymmetry (or 
colour-reversing symmetry) or~erations. 

2. The principle of the method 

The formation of an ideal bicrystal causes the sym- 
metry of the corresponding dichromatic complex to 
be lowered and this is represented by considering that 
the dichromatic complex is sectioned by a unique 
plane, called sectional plane. The orientation of the 

sectional plane in the dichromatic complex is the 
same with the orientation of the interfacial plane of 
the desired bicrystal. Furthermore, for taking into 
account the reduction of symmetry implied by the 
presence of atoms of different colours on either side 
of the interface, the sectional plane is considered 
two-sided by assuming that one of its sides is coloured 
white and the other black. In this paper, the normal 
to the interfacial plane is taken to point towards the 
white half of the bicrystal. 

It is clear that the symmetry of a bicrystal is allowed 
to contain only those of the symmetry elements (sym- 
metry axes and symmetry planes) that are common 
in the symmetry groups of the dichromatic complex 
and the two-sided sectional plane. So, strictly speak- 
ing, the symmetry of the bicrystal is described by a 
subgroup of the symmetry group of the dichromatic 
complex. The kind and/or  order of the symmetry 
elements of this subgroup must be consistent with the 
requirement of invariance of the interfacial plane and 
this implies that: 

(1) no ordinary centre of inversion is consistent 
with a bicrystal whereas the colour-reversing centre 
of inversion must be 'in' the interfacial plane. 

(2) perpendicular to the interfacial plane: either 
three-, four- and sixfold colour-reversing rotoinver- 
sion axes* or ordinary symmetry elements of order 
two, three, four and six. 

(3) parallel to the interfacial plane: only twofold 
proper or improper colour-reversing symmetry rota- 
tions. 

(4) inclined to the plane: no symmetry elements. 
Bicrystals may have zero-, one- or two-dimensional 

periodicity depending on the number of non-collinear 
translation axes there are on the interfacial plane 
(Pond & Bollmann, 1979). The presence and disposi- 
tion of the translational symmetry elements of a 
bicrystal are restricted by the periodicity of the 
dichromatic complex and the orientation of the sec- 
tional plane in the dichromatic complex. In the fol- 
lowing sections the dichromatic complex is taken to 
have three-dimensional translational symmetry, that 
is, it corresponds to those misorientations of the two 
crystals for which a coincidence-site lattice (CSL) is 
formed. These misorientations are described by a 
rotation angle 0 along a direction [uvw], where [uvw] 
is expressed in the unit cell of the white crystal, and 
they are symbolized by [uvw]/O. For bicrystals 
manufactured from CSL dichromatic complexes, 
rational sectional planes possess two-dimensional 
translational symmetry whereas irrational planes may 
correspond to one- or zero-dimensional periodic 
bicrystals. 

* Although only examples of 1' (which by themselves are rather 
special cases; Vlachavas, 1980) have come to the author's notice, 
all the rotoinversion axes are considered for the sake of generality. 
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3. Bicrystal point symmetry 

The first step in the determination of the symmetry 
of bicrystals manufactured from a given dichromatic 
complex is to establish all the interfacial orientations 
of possible interest. This is carded out by introducing 
the sectional plane in the point group of the dichro- 
matic complex. The origin of this group represents 
an invariant point on the sectional plane and, con- 
sequently, this procedure yields the highest point 
symmetry of bicrystals corresponding to different 
orientations of the interfacial plane. For this, we select 
first from all the subgroups* of the dichromatic point 
group only those that are permissible bicrystal point 
groups (Pond & Vlachavas, 1983). Then, for each of 
the selected subgroups we establish the orientation 
of the sectional plane so that all colour-reversing 
symmetry elements lie within this plane and all 
ordinary elements are perpendicular to the plane 
(except for colour-reversing rotoinversion axes; see 
above). 

For the determination of the interfacial plane 
orientation, it is advisable to consider the subgroup 
list in the sequence of decreasing group order. The 
reason for this is that in some cases the same orienta- 
tion of the sectional plane corresponds to two, or 
more, subgroups of the dichromatic point group. But 
for these planes the lower-order groups are subgroups 
of the bicrystal symmetry associated with the par- 
ticular orientation of the interface. 

An example will serve to demonstrate the deviation 
of the interfacial orientations of possible interest and 
the corresponding highest bicrystal point symmetries. 
We consider the dichromatic 9atternt formed by two 
face-centred cubic lattices in the [001]/36.9 ° CSL mis- 
orientation (Fig. 1); the space group of this pattern 
is I4/mm'm'. The subgroups of4/mm'm' that corre- 
spond to permissible bicrystal point groups are: 
42'2' (1), 4 (1), m'm2' (4), 22'2' (2), m' (4), 2' (4), 
m (1), 2 (1), 1 (1), where the numbers in parentheses 
represent the total number of subgroups. The determi- 
nation of interfacial planes for these subgroups is 
summarized in Table 1. Its first column lists the per- 
missible bicrystal point groups. The second and third 
columns give the number and orientation of the crys- 
tallographically equivalent groups corresponding to 
each subgroup of 4/mm'm' appearing in the first 
column. The last column tabulates the orientation of 
the interfacial plane of each bicrystal group. The 

* This includes the erystallographically equivalent as well as the 
trivial subgroups. By way of introduction we have chosen to treat 
each crystallographically equivalent subgroup separately, 
although, as will be shown in § 6, the interracial planes associated 
with a set of symmetry-equivalent subgroups can be determined 
by means of simple group-theoretical considerations. 

i" A dichromatic pattern is defined as the dichromatic complex 
formed by two interpenetrating point lattices (Pond & Vlachavas, 
1983). 

Table 1. Determination of the bicrystal groups and the 
associated interfacial planes for the group G =  

4/mm'm' 

(The coordinate system for specifying the orientation of symmetry 
elements and interfacial planes is as indicated in Fig. 1.) 

Bicrystal Symmetry-equivalent 
group H subgroups H in G Interracial 
(H c G) Number Orientation plane 

42'2' 1 4111001],, 2'llDo0]c (001L 
4 1 411[001]c (001)c 

ms'2'  2 m'll000L, mll(001)~ (100L 
m'll(010L, mll(001)~ (010L 

mm'2' 2 m'll(llO)o mll(001L (llO)c 
m'll(i10)o mll(001L (il0L 

22'2' 1 2'11[100],, 2'11[010]c (001)c 
22'2' 1 2'111110]o 2'll[T10]c (001)c 
m' 2 m' II (100)~ ClO0L 

m' II (010)¢ (OlO)c 
m' 2 m'll (ll0)c (ll0)c 

m'll(il0L (il0)c 
2' 2 2' II [100]c (0k/)c 

2' II E010]c (h_.Ol)c 
2' 2 2'11[110]~ (hhl)c 

2']1[110]c (hhl)¢ 
m 1 m l[ (001)c (hk0)c 
2 1 211[OOl]c (0Ol)~ 
1 1 Any (hkl)~ 

directions and planes in Table I are expressed relative 
to the coordinate system of Fig. 1; this is indicated 
by the subscript c. 

4. Spatial symmetry of bicrystals 

The determination of the spatial bicrystal symmetry 
is carded out by introducing the sectional plane in 
the space group* of the corresponding dichromatic 
complex. In this case, the bicrystal symmetry depends 

* Here on, we use the term 'space (symmetry) group' to indicate 
three-dimensional periodicity and the term 'spatial (symmetry 
group' for two- or one-dimensional periodicity. 
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Fig. 1. Projection along [001] of the unit cell of the CSL dichro- 
matic pattern formed by two face-centred cubic lattices with 
misorientation [001]/36.9 °. Large and small circles represent sites 
at levels 0 (or 1) and ½ along [001], respectively. Open and filled 
circles correspond to sites of the white_and black lattice, respec- 
tively. The x and y axes of the CSL coordinate system are also 
shown; the z axis is out of the plane of the paper. 
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Table 2. Two-dimensional periodic symmetry groups 
corresponding to sectioning of the space group 

I4 /mm'm'  

Periodicity 
Orientation of 
of sectional Elevation of sectional planet sectional 

plane* 0, -~ I, ~ Others plane 

{001}c [p42!2' p42~2' [ ~ a,b 
{100}~ p2' mm' p2'lmn' a,c 
{ll0}c c2'mm' c2'mc' a+b,c  
{hkO}c plml plml plml 

{h0tL ~ pt pl 
{hhl}c ] p12'l I pl pl 
{hk/}~ pl pl pl 

* Expressed relative to the coordinate system indicated in Fig. 1. 
t Elevation is given in terms of fractional distance between the planes 

with listed indices (origin at" rare're' intersection). 

on both the orientation and the location of the sec- 
tional plane in the space group of the dichromatic 
complex. Parallel relocation of the interfacial plane 
can change the symmetry of bicrystals whose spatial 
group possesses colour-reversing symmetry elements 
since such elements are present in a bicrystal only 
when the particular interface location contains them. 
For bicrystals where the basis is a single atom, parallel 
relocation of the interfacial plane is not distinct from 
rigid-body translation, i.e. displacement of the black 
crystal relative to the white one in a direction parallel 
to the interfacial plane (Pond, 1977). However, if the 
basis is more complex this is not generally true (Pond 
& Vlachavas, 1983). Exceptions are, for example, 
interfaces in materials where the basis consists of two 
atoms and the basis vector (i.e. the vector joining the 
atoms in different surroundings) is parallel to the 
interface in question. 

The procedure for determining the possible spatial 
groups of bicrystals is demonstrated by considering 
the CSL dichromatic pattern of Fig. 1. The interfacial 
orientations of possible interest were determined in 
the previous section and they are {100}~, {001}~, {110}c 
and so on. However, for a given orientation of the 
sectional plane only certain locations of this plane in 
the dichromatic pattern give distinct bicrystal groups. 
Thus, at the edge of the unit cell* of the dichromatic 
pattern the sectional plane (001)c corresponds to a 
two-dimensional periodic bicrystal with symmetry 
p42'2'. At z = c/2, where c is the magnitude of the 
periodicity vector along [001],, the plane (001)c has 
the same symmetry as just described. On the other 
hand, at z = c/4 or z = 3c/4 the sectional plane has 
symmetry p4212'. All other locations of the sectional 
plane (001)~ correspond to bicrystals with symmetry 
p4. It must be recalled that the ordinary symmetry 
operations of a bicrystal, being always perpendicular 
to the interfacial plane, are invariant with parallel 
relocation of the interface. 

* The origin of the unit cell is taken at the mm'm' intersection 
of the group 14/mm'm'. 

The bicrystal symmetry groups obtained by section- 
ing the space group 14/mm'm' in various orientations 
and positions are listed in Table 2. The symbols of 
the planar symmetry groups in this table are given 
according to the international coordinate system (see 
e.g. Pond & Vlachavas, 1983). In the last column of 
Table 2 the two-dimensional periodicity of the bicrys- 
tal groups enclosed in the top two frames is expressed 
in terms of the vectors a, b, c (lal = Ibl) of the unit cell 
of the dichromatic pattern. The reason for considering 
these groups only will become apparent in the next 
section. 

5. A new scheme for the classification of  interfaces 

Changes of the orientation and/or the position of the 
interracial plane modify both the point and the trans- 
lational symmetry of a bicrystal. The periodicity and 
the ordinary symmetry elements of a bicrystal are 
invariant with respect to parallel relocation of the 
interface. Thus, variations in the position of the inter- 
facial plane, affecting the colour-reversing symmetry 
elements only, can alter the point group of a bicrystal 
while conserving its translational symmetry. On the 
other hand, changes in the orientation of the inter- 
facial plane affect both the (ordinary and colour- 
reversing) symmetry operations and the periodicity 
of a bicrystal. 

Accordingly, interfaces can be classified into four 
categories. The first category comprises the interfaces 
for which the bicrystal symmetry group is uniquely 
determined by the orientation and position of the 
sectional plane. Examples of such interfaces are 
shown in the top left frame of Table 2. These will be 
called 'completely rigid interfaces' since when the 
sectional plane is rotated by an arbitrarily small angle 
about any direction and/or displaced by an arbitrarily 
small distance along its normal the corresponding 
bicrystal symmetry changes. The second category 
contains interfaces corresponding to bicrystals whose 
symmetry remains invariant with respect to arbitrary 
changes of the orientation and/or position of the 
interface. Such interfaces are called 'non-rigid 
interfaces' and they are not enclosed in any frame in 
Table 2. 

In the third category we have interfaces for which 
the bicrystal symmetry implies that only the inter- 
facial orientation is uniquely determined. Sectional 
planes parallel to a well defined orientation of the 
dichromatic complex, say (001)~, (ll0)c etc., are 
characteristic of this category. Examples are shown 
in the top right frame of Table 2 and they are called 
'orientation-rigid interfaces'. Finally, interfaces for 
which the corresponding bicrystal symmetry is 
invariant with respect to the orientation but not to 
parallel relocation of the interfacial plane are called 
'elevation-rigid interfaces' and are shown in the bot- 
tom left frame in Table 2. 
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In general, if the bicrystal symmetry group implies 
the specification of two (three) crystallographic direc- 
tions of the dichromatic complex, then the interface 
will be either completely rigid or orientation-rigid. In 
this case, the periodicity of the associated bicrystals 
is uniquely defined by the orientation of the sectional 
plane. On the other hand, if the bicrystal group 
necessitates the definition of a single direction or is 
not connected with any direction (as for 1 and 1') 
then the interface will be elevation-rigid or non-rigid. 
For these interfaces, the number of non-collinear 
periodicity axes of the corresponding bicrystal 
depends on the orientation of the sectional plane. If 
this plane is parallel to a rational plane of the dichro- 
matic complex, then the bicrystals obtained exhibit 
two-dimensional periodicity. If, however, the boun- 
dary plane is irrational, the bicrystals possess either 
one-dimensional translational symmetry or they are 
aperiodic. 

6. Symmetry-re lated interfaces 

As was mentioned in § 2, the formation of a bicrystal 
is accomplished by a reduction in symmetry and, as 
a consequence, sets of bicrystals of identical sym- 
metry can be created by more than one crystal- 
lographicaUy equivalent interfacial plane.* The 
bicrystals of such sets are called 'symmetry-related 
bicrystals' and they occur whenever a dichromatic 
complex contains point symmetry higher than 1 and 
the order of the bicrystal point group is less than the 
order of the dichromatic point group. 

It can be easily shown, following somewhat similar 
considerations to that of Aizu (1970) and Tendeloo 
& Amelinckx (1974), that the mutual relationships 
between symmetry-related bicrystals are described by 
decomposing the dichromatic point group G into 
(left) cosets of the bicrystal point group H (H = G): 

G = g l H  + g2H + . . .  + g,H, 

where the gi are not elements of H (except of the 
identity operation gl). Then, each coset represents 
the complete set of operations leading from a given 
bicrystal to another symmetry-related bicrystal. This 
implies that: 

(1) the number of symmetry-related bicrystals of 
given symmetry is equal to the index of H in G; 

(2) the set of operations that generates all sym- 
metry-related bicrystals can be obtained by taking 
one operation from each coset in the development of 
G into cosets of H. 

For the example considered in §§ 4 and 5 we have 
G = 4 / m m ' m ' ;  and let H = 42'2'. Since H is a subgroup 
of index 2 of G, we have G = H +  i l l ,  where i is the 

* It is possible that bicrystals with identical symmetry can be 
created by crystallographically non-equivalent interracial planes. 
These cases, however, must be treated separately. 

ordinary inversion operation, and this means that in 
this case two symmetry-related bicrystals exist. Each 
bicrystal has symmetry H and in both bicrystals the 
elements of H have the same orientation because H 
is an invariant subgroup of G. The relationship 
between the two bicrystals is described by any sym- 
metry operation of the coset ill. The same symmetry 
operations relate the interfacial planes of the two 
bicrystals, which are the (001)c and (00i)c planes, 
respectively, passing through the origin of the unit 
cell of the dichromatic pattern. It must be recalled 
that the specification of the interracial plane deter- 
mines the orientation as well as the white and black 
sites of the plane. 

Consider now that H = mm'2'  with 
mll(001)o m'll(100),. The symmetry relations of the 
bicrystals corresponding to this orientation of H are 
determined by the decomposition G = 

It 1 It 
H - ~ - C I + C 2 + C  3 ={1 s~o0, SO01, 2olo}+{S~1o, 2ilo, , 4OOl, 
~301}.~{S~10,  3 1, --1 1 , 1, 4ool, 211o, 4o01}+{2ool, Solo, i, 21oo} (the 
symmetry-operation notation has been explained by 
Vlachavas, 1984b). We have four symmetry-related 
bicrystals V1, V2, V3, V4 (Fig. 2). Any one operation 
in C1, C2, C3 transforms V1 to V2, V3, V4, respectively. 
Therefore, the bicrystals are related by the operations 
of the group, say, m ' m ' 2  = {1, S11o; Silo; 2~1} and the 
same operations relate the associated interfacial 
planes (lO0)c, (010)o (i00)~, (0i0)¢. 

7. Summary  

A methodology for the determination of all bicrystal 
symmetry groups that can be created from a given 
dichromatic complex has been described. The pro- 
cedure is based on the restrictions imposed on the 
orientation of the ordinary and colour-reversing sym- 

T'-i  ooj 
o 0 

V3 

- .(I00)c 

e QO o 1 

+ 

To..O.;.T 
c0T0)7 I .o ° %1-" 

o.o. 

Io+.T 
o l oI'  
°|.~ 

(TO0)c 

• • l 
v2 

Fig. 2. [001] projection of the four variants with symmetry p2'mm' 
obtained by locating the sectional plane parallel to {100} c with 
elevation 0 in the dichromatic pattern of Fig. 1. Large and small 
circles represent sites at levels 0 (or 1) and ½ along the projection 
direction, respectively. 
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metry elements of a bicrystal. The former must always 
be perpendicular to the interfacial plane and the later 
parallel to it (except of colour-reversing rotoinversion 
axes; see § 2). In order to take into account these 
restrictions, we consider that the symmetry group of 
the dichromatic complex is sectioned by a unique 
two-sided plane. Thus, the symmetry of the bicrystal 
associated with the particular orientation of the inter- 
facial plane is expressed by the set of symmetry 
operations of the dichromatic group that leave the 
two-sided sectional plane invariant. This procedure 
provides us with a comprehensive method for inves- 
tigating generic relations amongst bicrystals corre- 
sponding to the same misorientation relationship of 
their components. 

The most important conclusion achieved by study- 
ing the bicrystal symmetry by this method is that 
crystallographically equivalent interfacial planes 
create bicrystals with symmetry-related structures. 
Symmetry-related bicrystals arise as a consequence 
of dissymmetrization, and in this respect the idea of 
regarding a bicrystal as having been created by sec- 
tioning the corresponding dichromatic complex is 
most helpful. 

Further examination of generic relations amongst 
bicrystals can be accomplished by employing the 

proposed classification of interfaces. The distinction 
of four types of interfaces, namely completely rigid, 
orientation-rigid, elevation-rigid and non-rigid inter- 
faces, is important in connection with the physical 
properties of bicrystals. For the first three types of 
interfaces a small deviation from the orientation 
and/or position of the corresponding interfacial 
plane may be related to a sharp transition in the 
properties of the bicrystals. On the other hand, the 
symmetry considerations presented in this paper indi- 
cate that non-rigid interfaces can exhibit smooth 
changes of their physical properties over a wide range 
of interfacial orientations. 
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Abstract 

On the basis of the dynamical electron diffraction 
theory of Cowley & Moodie [Acta Cryst. (1957), 10, 
609-619], a new formula has been derived for the 
multiple-beam image intensity expressed in terms of 
the projected potential distribution as well as the 
specimen thickness. According to this formula, crys- 
tals for which the weak-phase-object approximation 
does not hold can be treated by the pseudo-weak- 
phase-object approximation (PWPOA) up to a certain 
critical thickness. Here the real crystal is replaced by 
its imaginary isomorph, where the constituent heavy 
atoms behave as lighter atoms than those of the real 
crystal, and vice versa. The validity of the PWPOA is 
discussed and confirmed by the comparison of the 
images of chlorinated Cu phthalocyanine calculated 
with PWPOA and the multislice method. 
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1. Introduction 

According to the weak-phase-object approximation 
(WPOA) the image intensity is expressed as 

I(x, y)=  1 - 2o'~(x, y) (1.~) 

under the optimum defocus condition (Schemer, 
1949; Cowley & Iijima, 1977), where tr = ~rlAE, A is 
the wavelength of electrons, E the accelerating vol- 
tage and ~(x, y) the projection of the potential distri- 
bution function (PPDF) of the weak phase object 
along the beam direction. Formula (1.1) shows a 
linear relationship between the image intensity and 
the PPDF. But it is well known that structure images 
corresponding to the projection of the crystal struc- 
ture can be obtained with specimens considerably 
thicker than the WPOA holds for. This was inter- 
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